

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

	

v1.4.2

	get_nearest_location(location) has the property that if ‘location’ is a point on the track, the point after ‘location’ on the track is returned https://github.com/tkrajina/gpxpy/pull/203

	parse bytes https://github.com/tkrajina/gpxpy/issues/175#issuecomment-645074781

v1.4.1

	Division by zero fixed https://github.com/tkrajina/gpxpy/issues/197

	Consider microseconds when total_seconds o timedelta is requested https://github.com/tkrajina/gpxpy/pull/196

	Use list instead of getchildren for Python 3.9 compatibility https://github.com/tkrajina/gpxpy/pull/192

	utils.total_seconds() ignores microseconds https://github.com/tkrajina/gpxpy/issues/201

v1.4.0

	Removed support for python2.* and python3.5

	Added typehints and with mypy checks

	Course computation https://github.com/tkrajina/gpxpy/pull/156 https://github.com/tkrajina/gpxpy/issues/155

	Refactored haversine_distance for speed and use math.radians https://github.com/tkrajina/gpxpy/pull/180

v1.3.5

	Rewrite parse_time so it understands time zones and microseconds https://github.com/tkrajina/gpxpy/pull/152

	Package version https://github.com/tkrajina/gpxpy/pull/157

	fix debug message https://github.com/tkrajina/gpxpy/pull/166

	Avoid the deprecated TestCase.assertEquals() API https://github.com/tkrajina/gpxpy/pull/161

	Add brackets for last print statement https://github.com/tkrajina/gpxpy/pull/151

	Add Python 3.7 classifier and test on CI https://github.com/tkrajina/gpxpy/pull/147

	Fixed problems with single quotes in xmlns

v1.3.4

	Added custom schemaLocation support https://github.com/tkrajina/gpxpy/pull/141

	Division by zero in gpxinfo

	Missing tag(s) during parsing https://github.com/tkrajina/gpxpy/issues/135

	to_xml() fails with an empty extension element https://github.com/tkrajina/gpxpy/issues/140

	Setup.py: update classifiers, add python_requires and long_description https://github.com/tkrajina/gpxpy/pull/142

v1.3.3

	Added avg time to gpxpnfo

	gpx.adjust_times for waypoints and routes https://github.com/tkrajina/gpxpy/pull/129

	added gpx.fill_time_data_with_regular_intervals https://github.com/tkrajina/gpxpy/pull/127

v1.3.2

	Fix #123 by using Earth semi-major axis with 6378.137 km (WGS84) https://github.com/tkrajina/gpxpy/issues/123

	No assert error if can’t calculate missing elevations https://github.com/tkrajina/srtm.py/issues/25

v1.3.1

	Prefix format reserved for internal use https://github.com/tkrajina/gpxpy/issues/117

v.1.3.0

	Logging exception fix https://github.com/tkrajina/gpxpy/pull/112

	Extension handling https://github.com/tkrajina/gpxpy/pull/105

	simplify polyline https://github.com/tkrajina/gpxpy/pull/100

v1.2.0

	Remove timezone from timestam string https://github.com/tkrajina/gpxpy/pull/77

	gpxinfo: output times in seconds https://github.com/tkrajina/gpxpy/pull/74

	gpxinfo: -m for miles/feet https://github.com/tkrajina/gpxpy/pull/108

	Minor get_speed fix https://github.com/tkrajina/gpxpy/pull/97

	Lat/Lon must not have scientific notation https://github.com/tkrajina/gpxpy/pull/96

	Simplify polyline fix https://github.com/tkrajina/gpxpy/pull/100

	Fix unicode BOM behavior https://github.com/tkrajina/gpxpy/pull/90

	Named logger https://github.com/tkrajina/gpxpy/pull/106

	Remove minidom https://github.com/tkrajina/gpxpy/pull/103

v.1.1.0

…

Contributing to gpxpy

gpxpy aims to be a full featured library for handling gpx files defined by the GPX 1.0 and 1.1 schemas. Specifically:

	Be able to lossless read any well-formed and valid gpx (1.0 or 1.1)

	Be able to manipulate all gpx fields defined by the schema

	Provide convenience functions for common computations and manipulations

	Be able to lossless write out any well-formed and valid gpx

Bug fixes, feature additions, tests, documentation and more can be contributed via issues [https://github.com/tkrajina/gpxpy/issues] and/or pull requests [https://github.com/tkrajina/gpxpy/pulls]. All contributions are welcome.

Bug fixes, feature additions, etc.

Please send a pull requests for new features or bugfixes to the dev branch. Minor changes or urgent hotfixes can be sent to master.
Please include tests for new features. Tests or documentation without bug fixes or feature additions are welcome too. Feel free to ask questions via issues [https://github.com/tkrajina/gpxpy/issues/new].

	Fork the gpxpy repository.

	Create a branch from master.

	Develop bug fixes, features, tests, etc.

	Run the test suite on both Python 2.x and 3.x. You can enable Travis CI [https://travis-ci.org/profile/] on your repo to catch test failures prior to the pull request, and Coveralls [https://coveralls.io] to see if the changed code is covered by tests.

	Create a pull request to pull the changes from your branch to the gpxpy master.

If you plan a big refactory, open an inssue for discussion before starting it.

Guidelines

Library code is read far more than it is written. Keep your code clean and understandable.

	Provide tests for any newly added code.

	Follow PEP8 and use pycodestyle for new code.

	Follow PEP257 and use pydocstyle. Additionally, docstrings should be styled like Google’s Python Style Guide [https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments]

	New code should pass flake8

	Avoid decreases in Coverage

Reporting Issues

When reporting issues, please include code that reproduces the issue and whenever possible, a gpx that demonstrates the issue. The best reproductions are self-contained scripts with minimal dependencies.

Provide details

	What did you do?

	What did you expect to happen?

	What actually happened?

	What versions of gpxpy, lxml and Python are you using?

 [image: _images/gpxpy.svg]Build Status [https://travis-ci.org/tkrajina/gpxpy]
[image: _images/badge.svg]Coverage Status [https://coveralls.io/github/tkrajina/gpxpy?branch=master]

gpxpy – GPX file parser

This is a simple Python library for parsing and manipulating GPX files. GPX is an XML based format for GPS tracks.

You can see it in action on my online GPS track editor and organizer [http://www.trackprofiler.com].

There is also a Golang port of gpxpy: gpxgo [http://github.com/tkrajina/gpxgo].

See also srtm.py [https://github.com/tkrajina/srtm.py] if your track lacks elevation data.

Usage

import gpxpy
import gpxpy.gpx

Parsing an existing file:

gpx_file = open('test_files/cerknicko-jezero.gpx', 'r')

gpx = gpxpy.parse(gpx_file)

for track in gpx.tracks:
 for segment in track.segments:
 for point in segment.points:
 print('Point at ({0},{1}) -> {2}'.format(point.latitude, point.longitude, point.elevation))

for waypoint in gpx.waypoints:
 print('waypoint {0} -> ({1},{2})'.format(waypoint.name, waypoint.latitude, waypoint.longitude))

for route in gpx.routes:
 print('Route:')
 for point in route.points:
 print('Point at ({0},{1}) -> {2}'.format(point.latitude, point.longitude, point.elevation))

There are many more utility methods and functions:
You can manipulate/add/remove tracks, segments, points, waypoints and routes and
get the GPX XML file from the resulting object:

print('GPX:', gpx.to_xml())

Creating a new file:

gpx = gpxpy.gpx.GPX()

Create first track in our GPX:
gpx_track = gpxpy.gpx.GPXTrack()
gpx.tracks.append(gpx_track)

Create first segment in our GPX track:
gpx_segment = gpxpy.gpx.GPXTrackSegment()
gpx_track.segments.append(gpx_segment)

Create points:
gpx_segment.points.append(gpxpy.gpx.GPXTrackPoint(2.1234, 5.1234, elevation=1234))
gpx_segment.points.append(gpxpy.gpx.GPXTrackPoint(2.1235, 5.1235, elevation=1235))
gpx_segment.points.append(gpxpy.gpx.GPXTrackPoint(2.1236, 5.1236, elevation=1236))

You can add routes and waypoints, too...

print('Created GPX:', gpx.to_xml())

GPX version

gpx.py can parse and generate GPX 1.0 and 1.1 files. The generated file will always be a valid XML document, but it may not be (strictly speaking) a valid GPX document. For example, if you set gpx.email to “my.email AT mail.com” the generated GPX tag won’t confirm to the regex pattern. And the file won’t be valid. Most applications will ignore such errors, but… Be aware of this!

Be aware that the gpxpy object model is not 100% equivalent with the underlying GPX XML file schema. That’s because the library object model works with both GPX 1.0 and 1.1.

For example, GPX 1.0 specified a speed attribute for every track point, but that was removed in GPX 1.1. If you parse GPX 1.0 and serialize back with gpx.to_xml() everything will work fine. But if you have a GPX 1.1 object, changes in the speed attribute will be lost after gpx.to_xml(). If you want to force using 1.0, you can gpx.to_xml(version="1.0"). Another possibility is to use extensions to save the speed in GPX 1.1.

GPX extensions

gpx.py preserves GPX extensions. They are stored as ElementTree [https://docs.python.org/2/library/xml.etree.elementtree.html#module-xml.etree.ElementTree] DOM objects. Extensions are part of GPX 1.1, and will be ignored when serializing a GPX object in a GPX 1.0 file.

XML parsing

If lxml is available, then it will be used for XML parsing, otherwise minidom is used. Lxml is 2-3 times faster so, if you can choose – use it.

The GPX version is automatically determined when parsing by reading the version attribute in the gpx node. If this attribute is not present then the version is assumed to be 1.0. A specific version can be forced by setting the version parameter in the parse function. Possible values for the ‘version’ parameter are 1.0, 1.1 and None.

Pull requests

Branches:

	master contains the code of the latest release

	dev branch is where code for the next release should go.

Send your pull request against dev, not master!

Before sending a pull request – check that all tests are OK. Run all the static typing checks and unit tests with:

$ make mypy-and-tests

Run a single test with:

$ python3 -m unittest test.GPXTests.test_haversine_and_nonhaversine

Gpxpy runs only with python 3.6+. The code must have type hints and must pass all the mypy checks.

GPXInfo

The repository contains a little command line utility to extract basic statistics from a file.
Example usage:

$ gpxinfo voznjica.gpx
File: voznjica.gpx
 Length 2D: 63.6441229018
 Length 3D: 63.8391428454
 Moving time: 02:56:03
 Stopped time: 00:21:38
 Max speed: 14.187909492m/s = 51.0764741713km/h
 Total uphill: 1103.1626183m
 Total downhill: 1087.7812703m
 Started: 2013-06-01 06:46:53
 Ended: 2013-06-01 10:23:45

License

GPX.py is licensed under the Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0]

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

